对于二次函数y=ax^2+bx+c,
其顶点坐标为(-b/2a,(4ac-b^2)/4a)
交点式:y=a(x-x₁)(x-x₂)[仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线],
其中x1,2=-b±√b^2-4ac,
顶点式:y=a(x-h)^2+k,
[抛物线的顶点P(h,k)],
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0),
注:在3种形式的互相转化中,有如下关系:h=-b/2a=(x₁+x₂)/2k=(4ac-b^2)/4a与x轴交点:x₁,x₂=(-b±√b^2-4ac)/2a。
所以二次函数的顶点坐标公式是顶点坐标是(-b/2a,4ac-b2/4a)。
y=ax^2+bx+cy=a(x^2+bx/a+c/a)y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2)
y=a(x+b/2a)^2+c-b^2/4ay=a(x+b/2a)^2+(4ac-b^2)/4a
对称轴x=-b/2a
顶点坐标(-b/2a,(4ac-b^2)/4a)