二元一次方程组解法,一般是将二元一次方程消元,变成一元一次方程求解。有两种消元方式:
1.加减消元法:将方程组中的两个等式用相加或者是相减的方法,抵消其中一个未知数,从而达到消元的目的,将方程组中的未知数个数由多化少,逐一解决。
2.代入消元法:通过“代入”消去一个未知数,将方程组转化为一元一次方程来解,这种解法叫做代入消元法,简称代入法。
解方程,去分母,乘以最小公倍数,
分子加上小括号,有括号要去掉,
正负变化忘不了,去括号要看符号,
如果前面是负号,括号里面全变号,
移项变号很重要,正负变化要记牢,
同类项,要合并,系数化1就完成。
1.去分母:在观察方程的构成后,在方程左右两边乘以各分母的最小公倍数;
2.去括号:仔细观察方程后,先去掉方程中的小括号,再去掉中括号,最后去掉大括号;
3.移项:把方程中含有未知数的项全部都移到方程的另外一边,剩余的几项则全部移动到方程的另一边;
4.合并同类项:通过合并方程中相同的几项,把方程化成ax=b(a≠0)的形式;
5.把系数化成1:通过方程两边都除以未知数的系数a,使得x前面的系数变成1,从而得到方程的解。