一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集。记作A⊆B(或B⊇A),读作“A包含于B”(或“B包含A”)。
即,对于集合A与B,∀x∈A有x∈B,则A⊆B。可知任一集合A是自身的子集,空集是任一集合的子集。
如果集合A⊆B,存在元素x∈B,且元素x不属于集合A,我们称集合A与集合B有真包含关系,集合A是集合B的真子集。记作A⊊B(或B⊋A),读作“A真包含于B”(或“B真包含A”)。
即:对于集合A与B,∀x∈A有x∈B,且∃x∈B且x∉A,则A⊊B。空集是任何非空集合的真子集。
子集就是一个集合中的全部元素是另一个集合中的元素,有可能与另一个集合相等;
真子集就是一个集合中的元素全部是另一个集合中的元素,但不存在相等。