初三网玉林中考地区

请选择

    返回
    初三网 > 玉林中考 > 玉林中考试题 > 玉林数学试题 > 正文

    2018年玉林中考数学模拟试题word版(含解析)

    文/张平

    此试题可能存在乱码情况,在查看时请点击右上角全屏查看

    2018年玉林中考数学模拟试题

    一.填空题:

    1.若|x+y|+|y﹣3|=0,则x﹣y的值为________.   

    2.函数y=  的自变量的取值范围是________.   

    3.一只口袋中放着8只红球和16只黑球,这两种球除颜色以外没有任何其他区别.从口袋中随机取出一个球,取出这个球是红球的概率为________.   

    4.如图,上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米.甲身高1.8米,乙身高1.5米,则甲的影长是________米.
      

    5.将一个圆分成四个扇形,它们的圆心角的度数比为2:4:5:7,则最大扇形的圆心角是________.   

    6.观察下列数据:﹣2,  ,﹣   ,﹣  ,…,它们是按一定规律排列的,依照此规律,第11个数据是________.   

    二.解答题:

    7.计算:cos30°  +|1﹣  |﹣(  )﹣1 .    

    8.如图,△ABC中,AB=AC,E、F分别是BC、AC的中点,以AC为斜边作Rt△ADC.
      

    (1)求证:FE=FD;   

    (2)若∠CAD=∠CAB=24°,求∠EDF的度数.   

    9.学校举办“大爱镇江”征文活动,小明为此次活动设计了一个以三座山为背景的图标(如图),现用红、黄两种颜色对图标中的A,B,C三块三角形区域分别涂色,一块区域只涂一种颜色.
      

    (1)请用树状图列出所有涂色的可能结果;   

    (2)求这三块三角形区域中所涂颜色是“两块黄色、一块红色”的概率.   

    10.如图,在矩形ABCD中,AB=8,AD=12,过点A,D两点的⊙O与BC边相切于点E,求⊙O的半径.
      

    11.某市居民用电的电价实行阶梯收费,收费标准如下表:

    一户居民每月用电量x(单位:度)

    电费价格(单位:元/度)

    0<x≤200

    a

    200<x≤400

    b

    x>400

    0.92

    (1)已知李叔家四月份用电286度,缴纳电费178.76元;五月份用电316度,缴纳电费198.56元,请你根据以上数据,求出表格中a,b的值.

    (2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?

    12.张老师利用休息时间组织学生测量山坡上一棵大树CD的高度,如图,山坡与水平面成30°角(即∠MAN=30°),在山坡底部A处测得大树顶端点C的仰角为45°,沿坡面前进20米,到达B处,又测得树顶端点C的仰角为60°(图中各点均在同一平面内),求这棵大树CD的高度(结果精确到0.1米,参考数据:  ≈1.732)
      

    13.如图,抛物线m:y=﹣0.25(x+h)2+k与x轴的交点为A,B,与y轴的交点为C,顶点为M(3,6.25),将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为D.
      

    (1)求抛物线n的解析式;   

    (2)设抛物线n与x轴的另一个交点为E,点P是线段DE上一个动点(P不与D,E重合),过点P作y轴的垂线,垂足为F,连接EF.如果P点的坐标为(x,y),△PEF的面积为S,求S与x的函数关系式,写出自变量x的取值范围,并求出S的最大值;   

    (3)设抛物线m的对称轴与x轴的交点为G,以G为圆心,A,B两点间的距离为直径作⊙G,试判断直线CM与⊙G的位置关系,并说明理由.   


    2018年玉林中考数学模拟试题参考答案

    一.填空题:

    1.【答案】﹣6                   
    【考点】解二元一次方程组               
    【解析】【解答】解:|x+y|+|y﹣3|=0,
    ∴x+y=0,y﹣3=0,解得y=3,x=﹣3.
    ∴x﹣y=﹣3﹣3=﹣6.
    故答案为:﹣6.
    【分析】此题考查的是非负数的性质,几个非负数之和为0,则每一个数都为0,建立方程组 ,求出方程组的解,即可求出x-y的值。   

    2.【答案】x≥﹣3且x≠﹣1                   
    【考点】分式有意义的条件,二次根式有意义的条件,函数自变量的取值范围               
    【解析】【解答】解:由题意,得
    x+3≥0且x+1≠0,
    解得x≥﹣3且x≠﹣1,
    故答案为:x≥﹣3且x≠﹣1.
    【分析】观察此函数含自变量的式子是分式,且分子中含有二次根式。根据分母≠0,且被开方数≥0,建立不等式组求解即可。   

    3.【答案】
    【考点】概率公式               
    【解析】【解答】解:∵一只口袋中放着8只红球和16只黑球,这两种球除颜色以外没有任何其他区别,
    ∴从口袋中随机取出一个球,取出这个球是红球的概率为:  =
    故答案为:
    【分析】由题意可知,一共有24种可能,从口袋中随机取出一个球,取出这个球是红球有8种可能,根据概率公式求解即可。   

    4.【答案】6                   
    【考点】相似三角形的判定与性质,相似三角形的应用               
    【解析】【解答】解:设甲的影长是x米,
    ∵BC⊥AC,ED⊥AC,
    ∴ED∥BC
    ∴△ADE∽△ACB,
     =
    ∵CD=1m,BC=1.8m,DE=1.5m,
     =
    解得:x=6.
    所以甲的影长是6米.
    【分析】将实际问题转化为数学问题,由已知易证明ED∥BC,从而得到△ADE∽△ACB,再根据相似三角形的性质对应边成比例,建立方程,解方程即可求解。   

    5.【答案】140°                   
    【考点】圆心角、弧、弦的关系               
    【解析】【解答】解:设四个扇形的圆心角的度数是2x,4x,5x,7x,
    得出方程2x+4x+5x+7x=360,
    解得:x=20,
    故7×20°=140°.
    故答案为:140°
    【分析】将一个圆分成四个扇形,可知道四个圆心角的度数之和为360°,根据它们的圆心角的度数比为2:4:5:7,设未知数建立方程,求解即可知道最大圆心角的度数。   

    6.【答案】﹣
    【考点】探索数与式的规律               
    【解析】【解答】解:∵﹣2=﹣   ,﹣   ,﹣  ,…,
    ∴第11个数据是:﹣  =﹣
    故答案为:﹣
    【分析】观察此组数据可知,所有数据的分母是连续的正整数,第奇数个是负数,分子是连续正整数的平方加1,根据此规律就可以求出第11个数。   

    二.<b >解答题:</b>

    7.【答案】解:原式=  +  +  ﹣1﹣3=2
    【考点】实数的运算,负整数指数幂,特殊角的三角函数值               
    【解析】【分析】此题是一道综合计算题,在解答此题时注意:|1﹣ |= -1,(   )﹣1 . =3。   

    8.【答案】(1)证明:∵E、F分别是BC、AC的中点,
    ∴FE=  AB,
    ∵F是AC的中点,∠ADC=90°,
    ∴FD=  AC,
    ∵AB=AC,
    ∴FE=FD;
    (2)解:∵E、F分别是BC、AC的中点,
    ∴FE∥AB,
    ∴∠EFC=∠BAC=24°,
    ∵F是AC的中点,∠ADC=90°,
    ∴FD=AF.
    ∴∠ADF=∠DAF=24°,
    ∴∠DFC=48°,
    ∴∠EFD=72°,
    ∵FE=FD,
    ∴∠FED=∠EDF=54°.                   
    【考点】三角形的外角性质,等腰三角形的性质,直角三角形斜边上的中线,三角形中位线定理               
    【解析】【分析】(1)由已知易证FD是△ABC的中位线和△Rt△ACD斜边上的中线,根据三角形中位线定理及直角三角形斜边上的中线等于斜边的一半,易证得FE=FD。
    (2)由已知条件得出FE∥AB,求出∠EFC的度数,根据直角三角形斜边上的中线等于斜边的一半,就可以求出∠ADF=∠DAF,再根据三角形的外角等于不相邻的两内角之和,求出∠DFC的度数,利用(1)的结论,就可以求出∠EDF的度数。   

    9.【答案】(1)解:画树状图法如下:

    所有可能为:(黄,黄,黄),(黄,黄,红),(黄,红,黄),(黄,红,红),(红,黄,黄),
    (红,黄,红),(红,红,黄),(红,红,红)
    (2)解:从树状图看出,所有可能出现的结果共有8种,
    恰好“两块黄色、一块红色”的结果有3种,
    所以这个事件的概率是  .                   
    【考点】列表法与树状图法               
    【解析】【分析】(1)画出树状图即可。
    (2)根据(1)中所画出的树状图求出所有可能的情况数,以及恰好“两块黄色、一块红色恰好”的情况数,然后根据概率公式就可以求出结果。   

    10.【答案】解:连接OE,并反向延长交AD于点F,连接OA,

    ∵BC是切线,
    ∴OE⊥BC,
    ∴∠OEC=90°,
    ∵四边形ABCD是矩形,
    ∴∠C=∠D=90°,
    ∴四边形CDFE是矩形,
    ∴EF=CD=AB=8,OF⊥AD,
    ∴AF=  AD=  ×12=6,
    设⊙O的半径为x,则OE=EF﹣OE=8﹣x,
    在Rt△OAF中,OF2+AF2=OA2  ,
    则(8﹣x)2+36=x2  ,
    解得:x=6.25,
    ∴⊙O的半径为:6.25.                   
    【考点】菱形的判定与性质,垂径定理,切线的性质               
    【解析】【分析】由已知条件⊙O与BC边相切于点E,连接OE,并反向延长交AD于点F,连接OA。易得到四边形CDFE是矩形,得出OF⊥AD,根据垂径定理求出AF的长,就将求圆的半径转化到Rt△AOF中求解。   

    11.【答案】(1)解:根据题意得:
    解得:
    (2)解:设李叔家六月份最多可用电x度,
    根据题意得:200×0.61+200×0.66+0.92(x﹣400)≤300,
    解得:x≤450.
    答:李叔家六月份最多可用电450度.                   
    【考点】二元一次方程组的应用,一元一次不等式的应用               
    【解析】【分析】(1)观察表格,了解收费标准。抓住已知条件找出等量关系:四月份用电286度,缴纳电费=178.76元;五月份用电316度,缴纳电费=198.56元,建立方程组,解方程即可。
    (2此小题的不等关系是:李叔计划六月份电费支出≤300元。根据电费的收费标准设未知数,列不等式,即可求解。   

    12.【答案】解:如图,过B作BE⊥CD交CD延长线于E,

    ∵∠CAN=45°,∠MAN=30°,
    ∴∠CAB=15°
    ∵∠CBE=60°,∠DBE=30°,
    ∴∠CBD=30°,
    ∵∠CBD=∠CAB+∠ACB,
    ∴∠CAB=∠ACB=15°,
    ∴AB=BC=20,
    在Rt△BCE中,∠CBE=60°,BC=20,
    ∴CE=BCsin∠CBE=20×  BE=BCcos∠CBE=20×0.5=10,
    在Rt△DBE中,∠DBE=30°,BE=10,
    ∴DE=BEtan∠DBE=10×
    ∴CD=CE﹣DE=  ≈11.5,
    答:这棵大树CD的高度大约为11.5米.                   
    【考点】特殊角的三角函数值,解直角三角形的应用-仰角俯角问题               
    【解析】【分析】由在B处,测得树顶端点C的仰角为60°,添加辅助线。过B作BE⊥CD交CD延长线于E,构造直角三角形。先证明△ABC是等腰三角形,然后运用解直角三角形的相关知识,在Rt△BCE、Rt△DBE中分别求出CE、DE的长,即可出树高CD   

    13.【答案】(1)解:∵抛物线m:y=﹣0.25(x+h)2+k的顶点为M(3,6.25),
    ∴m的解析式为y=﹣  (x﹣3)2+  =﹣  (x﹣8)(x+2),
    ∴A(﹣2,0),B(8,0),
    ∵将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为D,
    ∴D的坐标为(13,﹣6.25),
    ∴抛物线n的解析式为y=  (x﹣13)2﹣  ,即y=  x2﹣  x+36
    (2)解:∵点E与点A关于点B成中心对称,
    ∴E(18,0).
    设直线DE的解析式为y=kx+b,
     ,解得
    ∴y=  x﹣
    ∵P点的坐标为(x,y),13<x<18,
    ∴S△PEF=  PF•OF=  x•(﹣y)=﹣  xy=﹣  x(  x﹣  )=﹣  x2+  x,
    即S=﹣  x2+  x(13<x<18),
    ∴当x=  =9时,S有最大值,但13<x<18,所以△PEF的面积S没有最大值;
    (3)解:直线CM与⊙G相切,理由如下:
    ∵抛物线m的解析式为y=﹣  (x﹣3)2+  =﹣  (x﹣8)(x+2),
    ∴令x=0,得y=4,
    ∴C(0,4).
    ∵抛物线m的对称轴与x轴的交点为G,
    ∴G(3,0),
    ∵OC=4,OG=3,连结CG,
    ∴CG=  =5,
    ∵AB=10,
    ∴⊙G的半径是5,
    ∴点C在⊙G上.
    过M作y轴的垂线,垂足为N,连结CM,

    则CM2=CN2+MN2=(  ﹣4)2+32=
    又CG2+CM2=52+  =  =(  )2=GM2  ,
    ∴CG⊥CM,
    ∴直线CM与⊙G相切.                   
    【考点】待定系数法求一次函数解析式,二次函数的最值,待定系数法求二次函数解析式,旋转的性质,与二次函数有关的动态几何问题               
    【解析】【分析】(1)先根据已知条件求出抛物线m的函数解析式。及它与x轴的两交点坐标,再根据旋转的性质,求出旋转后的抛物线的顶点D坐标,即可求出旋转后的抛物线的解析式。
    (2)抓住已知过点P作y轴的垂线,可知PF⊥y轴,s= PF•OF,只需用含x的代数式分别表示出PF、OF即可。就要求出直线DE的函数解析式,求出PF、OF的长,就可以表示出s与x的函数关系式,求出此函数的顶点坐标即可。注意x取值范围是13<x<18。
    (3)要判断直线CM与⊙G的位置关系,先要证明点C在⊙G上,根据抛物线m的函数解析式求出点C的坐标,再求出CG的长,可知点C在⊙G上。添加辅助线,连接CG、MC、过点M作y轴的垂线,垂足为N。运用勾股定理分别求出CM2、CG2、GM2  , 再运用勾股定理的逆定理判断△CMG是否是直角三角形,即可证得直线CM与⊙G相切。   

    相关阅读

    孔乙己人物形象特点分析 讲述了什么故事

    2022-10-19

    自然界产生氧气的化学方程式 光色素种类有哪些

    2022-10-19

    综合评价招生报考条件 有哪些优势

    2022-10-19

    中括号在数学中的含义 括号的作用是什么

    2022-10-19

    济南最好的职高学校 济南职高学校推荐

    2022-10-19

    应然和实然是什么意思 两者有区别吗

    2022-10-19

    地理地中海气候特点 地中海气候主要分布在哪里

    2022-10-19

    碱石灰的主要成分是什么

    2022-10-19

    济阳职业中等专业学校地址在哪里 怎么去

    2022-10-19

    亟需和急需的区别是什么

    2022-10-19

    综合评价招生是什么意思 报名条件是什么

    2022-10-19

    怎样提高英语写作能力 英语作文万能句子

    2022-10-19

    可见光波长范围是多少 有哪些特性

    2022-10-19

    中考前如何提高学习成绩 有哪些技巧

    2022-10-19

    e,k在数学中代表什么

    2022-10-19