奇函数×奇函数是偶函数,根据奇函数和偶函数的特点和定义,如果奇函数×奇函数,结果便是“偶函数”。同时奇函数乘偶函数是奇函数,奇函数加减奇函数是奇函数,偶函数加减偶函数是偶函数,奇函数乘奇函数是偶函数,偶函数乘偶函数是偶函数。偶函数乘偶函数是偶函数。
1748年欧拉出版他的数学名著《无穷分析引论》,将函数确立为分析学的最基本的研究对象.在第一章,他给出了函数的定义、对函数进行了分类,并再次讨论了两类特殊的函数:偶函数和奇函数。
欧拉给出的奇、偶函数定义与1727年论文中的定义实质上并无二致,但他讨论了更多类型的奇、偶函数,也给出了奇函数的更多的性质。
奇函数性质
1、图象关于原点对称
2、满足f(-x)=-f(x)
3、关于原点对称的区间上单调性一致
4、如果奇函数在x=0上有定义,那么有f(0)=0
5、定义域关于原点对称(奇偶函数共有的)
偶函数性质
1、图象关于y轴对称
2、满足f(-x)=f(x)
3、关于原点对称的区间上单调性相反
4、如果一个函数既是奇函数有是偶函数,那么有f(x)=0
5、定义域关于原点对称(奇偶函数共有的)