c上标3下标5表示在5个物体中任选取3个物体进行排列,只要我们套用一下排列数公式即可得出答案。c上标3下标5=5*4*3*2*1/3*2*1(5-3)!=5*4*3*2*1/3*2*1*2*1=10。无论是分类计数原理还是分步计数原理,它们都是把一个事件分解成若干个分事件来完成的。
排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。
排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。排列组合与古典概率论关系密切。
1.加法原理与乘法原理
加法原理:完成一件事情,需要划分几个类别,各类别中的方法可以独立完成这件事情。当这种分类没有重复、没有遗漏时,完成这件事情的方法总数等于每一类方法数之和。
2.排列
排列指的是从n个不同元素中任取m个按照一定的顺序排成一列,排列种数记作。根据乘法原理,把整件事分成m步,挑第一个有n种选择,第二个有(n-1)种选择
3.组合
组合指的是从n个不同元素中取出m个元素作为一组,组合种数记作。与排列不同的是,组合只关注取出的是什么,不考虑取出的顺序。根据排列的计算方法,从n个不同元素中任取m个排成一列有种情况,每组有种排列