有理数为整数(正整数、0、负整数)和分数的统称。有理数可分为正有理数、0、负有理数。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。
有理数a,b的大小顺序的规定:如果a-b是正有理数,则称当a大于b或b小于a,记作a>b或b<a。任何两个不相等的有理数都可以比较大小。
有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。
1、按有理数的定义分类
有理数分为:整数和分数。整数分为正整数、零、负整数;分数分为:正分数、负分数。
2、按有理数的性质分类
有理数分为正有理数、零、负有理数。正有理数分为正整数、正分数;负有理数分为负整数、负分数。
有理数这个词最初源自古希腊,是由古希腊著名的数学家、哲学家毕达哥拉斯最早提出的,后来传到了西方,明朝的时候经由传教士传到了中国,徐光启当时把它译为“理”,据说“理”在当时文言文中有“比值”的意思,后又传到日本,日本学者就把它理解为“道理、理性”。
近代中国又直接沿用了日本的译法。很大的原因是因为这个词的英文是“rational number”,rational一般作“合理的、理性的”来讲,但是它的词根ratio是“比率、比例”的意思。