角平分线的定义是从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。角平分线是在角的型内及形上,到角两边距离相等的点的轨迹。
角平分线在三角形中的定义是三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线,也叫三角形的内角平分线。由定义可知,三角形的角平分线是一条线段。由于三角形有三个内角,所以三角形有三条角平分线。三角形的角平分线交点一定在三角形内部。
角平分线的性质定理和判定
1、角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线;
2、角平分线的性质定理:角平分线上的点到角的两边的距离相等:①平分线上的点;②点到边的距离;
3、角平分线的判定定理:到角的两边的距离相等的点在角平分线上
“角平分线的交点叫内心,垂线的交点叫垂心,中线的交点分别叫重心,垂直平分线的交点叫外心,三角形一内角平分线和另外两顶点处的外角平分线交于一点,叫做旁心。
三角形有许多性质,存在很多“心”的性质:
1、重心:三角形重心是三角形三条中线的交点。当几何体为匀质物体时,重心与形心重合。2、外心:三角形外接圆的圆心叫做三角形的外心。三角形外接圆的圆心也就是三角形三边垂直平分线的交点,三角形的三个顶点就在这个外接圆上。