一、利用等式的性质解方程。
因为方程是等式,所以等式具有的性质方程都具有。
1、方程的左右两边同时加上或减去同一个数,方程的解不变。
2、方程的左右两边同时乘同一个不为0的数,方程的解不变。
3、方程的左右两边同时除以同一个不为0的数,方程的解不变 。
二、两步、三步运算的方程的解法
两步、三步运算的方程,可根据等式的性质进行运算,先把原方程转化为一步求解的方程,在求出方程的解。
有分母先去分母、有括号就去括号、需要移项就进行移项、合并同类项等。
1、找出方程的未知数,能合并的先合并,能计算的先计算,如果方程里有其他的项里面有数运算的,先运算出来。有括号的一般可以把括号直接去掉,让括号里面的与外面的分别相乘,然后再把含有x的项进行计算。
2、配方就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。用得较多的是配成完全平方式。配方法的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
3、 解方程中经常用到的相关性质:在等式的两边同时加上或减去同一个数,等式仍成立。在等式的两边同时乘以或除以同一个数(零除外),等式仍成立。移项时要注意:把未知数项放在同一边,把常数项放在另一边,移项要改变符号。