因式分解七步口诀:首先提取公因式,其次考虑用公式,十字相乘排第三,分组分解排第四,几法若都行不通,拆项添项试一试,不能分解是答案。
把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。
因式分解的一般步骤:1、如果多项式的首项为负,应先提取负号;这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。
2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。
3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
4、如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。
1、平方差公式:a²-b²=(a+b)(a-b)。
2、完全平方公式:a²+2ab+b²=(a+b)²。
3、立方和公式:a³+b³=(a+b)(a²-ab+b²)。
4、立方差公式:a³-b³=(a-b)(a²+ab+b²)。
5、完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。
6、完全立方差公式:a³-3a²b+3ab²-b³=(a-b)³。
7、三项完全平方公式:a²+b²+c²+2ab+2bc+2ac=(a+b+c)²。
8、三项立方和公式:a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)。