有理数是数学中的一个基本概念定理,有理数指整数可以看作分母为1的分数,也就是整数和分数的统称。正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数(rational number)。有理数的小数部分是有限或循环小数。
有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
本质区别
任何一个有理数均可以写成两个整数的比的形式。任何一个无理数均无法写成两个整数的比的形式。
补充:无限循环小数也可写为两个整数的比的形式,故无限循环小数属于有理数
范围不同
有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数。
结构不同
有理数为整数(正整数、0、负整数)和分数的统称。无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。