三角形的高的计算公式是:h=2×S△÷a(S△是三角形的面积,a是三角形的底)。三角形是由同一平面内不在同一直线上的三条线段“首尾”顺次连接所组成的封闭图形,在数学、建筑学有应用。
常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
S=1/2ah(面积=底×高÷2。其中,a是三角形的底,h是底所对应的高)。
三角形面积公式是指使用算式计算出三角形的面积,同一平面内,且不在同一直线的三条线段首尾顺次相接所组成的封闭图形叫做三角形。
设三角形三边分别为a、b、c,外接圆半径为R。
则三角形面积=abc/4R。
S=2R²·sinA·sinB·sinC。
三角形的基本性质:三角形两边之和大于三边,两边之差小于三边;三角形的三个内角之和等于180°;三角形具有稳定性。
等边三角形的性质:等边三角形的三个内角都相等,各内角为60°;等边三角形的各边具有角平分线、边上中线、边上高重合的“三线合一”性质;等边三角形是轴对称图形,对称轴是三条边的“垂直二分线”,数量有三条。
等腰三角形的性质:等腰三角形的两个底角相等(等腰对等角);等腰三角形顶角平分线、底边上中线、底边上高重合,即等腰三角形的“三线合一”。
直角三角形的性质:等边三角形的3个内角都相等,各内角为60°;等边三角形的各边具有“三线合一”的性质,即角平分线、边上中线、边上高重合;等边三角形是轴对称图形,对称轴是三条“垂直二分线”,数量有三条。