第n项的值,an=首项+(项数-1)×公差
前n项的和,Sn=首项×n+项数(项数-1)公差/2
公差d=(an-a1)÷(n-1)(其中n大于或等于2,n属于正整数)
项数=(末项-首项)÷公差+1
末项=首项+(项数-1)×公差
当数列为奇数项时,前n项的和=中间项×项数
数列为偶数项,前n项的和=(首尾项相加×项数)÷2
等差数列中项公式2an+1=an+an+2其中{an}是等差数列
等差数列的和=(首项+末项)×项数÷2
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均属于正整数。
1.等差数列的第一个性质就是通项公式推广,它的通项公式不再是之前的表达方式,给的不再是首项与公差,而是任意一项,
2.等差数列最重要的一个性质就是等差数列的序号和性质。