1、辨认东、南、西、北四个方向辨认东、南、西、北四个方向:先确定一个方向,再根据这个方向辨认其他三个方向。根据一个确定的方向找其他三个方向的方法:面南背北,左东右西;面北背南,左西右东;面东背西,左北右南;面西背东,左南右北。
2、在地图上辨认东、南、西、北地图通常是按上北、下南、左西、右东绘制的,按顺时针方向,面向北时右侧是东,面向东时右侧是南,面向南时右侧是西,面向西时右侧是北。观察点不同,描述物体方向的叙述语言也不同,即观察点不同,相对应的物体所在的方向也会不同。
3、辨认东南、东北、西南、西北四个方向的方法辨认东南、东北、西南、西北四个方向的方法:
(1) 利用指南针辨认。
(2)借助身边的事物辨认,先找东、南、西、北中的一个方向,再找其他三个方向,最后找东南、东北、西南、西北四个方向。
4、看简单路线图(八个方向)描述行走路线
(1)八个方向:东、南、西、北、东南、东北、西南、西北。
(2)描述行走路线的方法:以出发点为标准,先确定要到达的地点所处的方向,再看哪一条路通向目的地,最后把行走路线描述出来。
(一)口算除法
【1】 整千、整百、整十数除以一位数的口算方法:P11【1】、12【2】
(1)【用表内除法计算】:用被除数0前面数除以一位数,算出结果后,看被除数的末尾有几个0,就在算出的结果后添几个0。 如:60÷3=,用被除数60中0前面数是6除以一位数3,
即:6÷3=2,算出结果后,被除数的末尾有1个0,就在算出的结果2后添1个0.所以:60÷3=20.
(2)【想乘算除法】:看一位数乘多少等于被除数,所乘的数就是所求的商。
如:60÷3=,想:3×( )=60,由于3×(20)=60,所以:60÷3=20.
【2】 几十几除以一位数的口算方法:P12【3】
①.把被除数写成:几十与几的和或:几十与几的差;②.用“几十”与“几”分别除以一位数,③.把所得的商相加或相减的结果就是最后的结果.
如:66÷3=,66=60+6,60÷3=20,6÷3=2,20+2=22,所以:66÷3=22.
如:72÷4=,72=80-8,80÷4=20,8÷4=2,20-2=18,所以:72÷4=18.
(二)笔算除法
【1】【除数是一位数的'笔算方法】:P15【1】、16【2】
从被除数的高位除起,先被除数的前一位除以一位数;如果不够除,再被除数的前两位除以一位数,除到被除数的哪一位,商就写到被除数那一位的上面。
除到被除数的哪一位不够商1,用“0”占位。(每一次除得的余数必须比除数小),再把被除数上的数对应落下来和余数合起来,再继续除。P23【6.1】24【6.2】
【2】【判断商是几位数的方法】:先看被除数的最高位,被除数最高位大于或等于除数,则商的位数与被除数相同;如果被除数最高位小于除数,则商的位数比被除数少一位。
1.位置:所在或所占的地方。
2.方向:指东,西,南,北等方位。
3.除法:已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
若ab=c(b≠0),用积数c和因数b来求另一个因数a的运算就是除法,写作c/b,读作c除以b(或b除c)。其中,c叫做被除数,b叫做除数,运算的结果a叫做商。
4.除法法则:除数是几位,先看被除数的前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。余数要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,要化成除数是整数的除法再计算。
5.商不变性质:被除数和除数同时乘或除以一个非零自然数,商不变。
6.除法的性质:一个数连续除以几个数,等于这个数除以那几个数的乘积,就是除法的性质。有时可以根据除法的性质来进行简便运算。如:300÷25÷4=300÷(25×4)。
7.被除数、除数、商的关系:
被除数扩大(缩小)n倍,商也相应的扩大(缩小)n倍。
除数扩大(缩小)n倍,商相应的缩小(扩大)n倍)。
8.笔算除法:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。
9.除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。
10.没有括号的混合运算:
同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。