一、体积和表面积
三角形的面积=底×高÷2。公式S=a×h÷2
正方形的面积=边长×边长公式S=a2
长方形的面积=长×宽公式S=a×b
平行四边形的面积=底×高公式S=a×h
梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的表面积=(长×宽+长×高+宽×高)×2公式:S=(a×b+a×c+b×c)×2
正方体的表面积=棱长×棱长×6公式:S=6a2
长方体的体积=长×宽×高公式:V=abh
长方体(或正方体)的体积=底面积×高公式:V=abh
正方体的体积=棱长×棱长×棱长公式:V=a3
圆的周长=直径×π公式:L=πd=2πr
圆的面积=半径×半径×π公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
1、数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2、相反数:实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3、倒数:若两个数的积等于1,则这两个数互为倒数。
4、有理数比大小:正数的绝对值越大,这个数越大;正数永远比0大,负数永远比0小;正数大于一切负数;两个负数比大小,绝对值大的反而小;数轴上的两个数,右边的数总比左边的数大;大数-小数>0,小数-大数<0。
5、一元一次方程的概念:只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程。任何形式的一元一次方程,经变形后,总能变成形为ax=b(a≠0,a、b为已知数)的形式,这种形式的方程叫一元一次方程的一般式,注意a≠0。
6、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
7、等式的性质:等式两边加同一个数(或式子)结果仍得等式;等式两边乘同一个数或除以一个不为零的数,结果仍得等式。
8、三角形的三边关系定理:三角形的两边之和大于第三边;三角形三个内角和等于180°;三角形的一个外角等于和它不相邻的来两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角。
9、对顶角相等:有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角;两条直线相交,有2对对顶角。
10、两条直线相交:所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的。垂线,它们的交点叫做垂足。