首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根
1.当Δ=b^2-4ac0时 x有两个不相同的实数根
当判断完成后,若方程有根可根属于第2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a来求得方程的根
(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”如:解方程:x^2+2x+1=0
利用完全平方公式因式分解得:(x+1﹚^2=0解得:x1=x2=-1
ax^2+bx+c=0同时除以a,可变为x^2+bx/a+c/a=0
设:x=y-b/2方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0 X错,应为 (y^2+b^2/4-by)除以(by-b^2/2)+c=0
再变成:y^2+(b^22*3)/4+c=0 X/y^2-b^2/4+c=0 y=±√[(b^2*3)/4+c] X/y=±√[(b^2)/4+c]
将一元二次方程配成(x+m)²=n的形式,再利用直接开平方法求解的方法。
用配方法解一元二次方程的步骤:
①把原方程化为一般形式;
②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
③方程两边同时加上一次项系数一半的平方;
④把左边配成一个完全平方式,右边化为一个常数;
⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
配方法的理论依据是完全平方公式a²+b²±2ab=(a±b)²配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方。
以上就是初三网小编为大家总结的一元二次方程的解法,仅供参考,希望对大家有帮助。