初三网全国地区

请选择

    返回
    初三网 > 初中数学 > 数学公式 > 正文

    初中数学常用重点公式整理

    文/王蕊

    想要学好数学公式是非常重要的,下面初三网小编就大家整理一下初中数学常用重点公式整理 ,仅供参考。

    初中数学常用重点公式整理

    常用导数公式

    1.y=c(c为常数) y'=0

    2.y=x^n y'=nx^(n-1)

    3.y=a^x y'=a^xlna

    y=e^x y'=e^x

    4.y=logax y'=logae/x

    y=lnx y'=1/x

    5.y=sinx y'=cosx

    6.y=cosx y'=-sinx

    7.y=tanx y'=1/cos^2x

    8.y=cotx y'=-1/sin^2x

    9.y=arcsinx y'=1/√1-x^2

    10.y=arccosx y'=-1/√1-x^2

    11.y=arctanx y'=1/1+x^2

    12.y=arccotx y'=-1/1+x^2

    初中数学公式之正弦定理

    正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

    余弦定理

    余弦定理 b2=a2+c2-2accosB 注:角 B 是边 a 和边 c 的夹角

    二次函数顶点坐标公式

    (1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0),则称y为x的二次函数。顶点坐标(-b/2a,(4ac-b^2)/4a)

    (2)顶点式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k为常数,a≠0).

    (3)交点式(与x轴):y=a(x-x1)(x-x2)

    (4)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.

    说明:

    (1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点.

    (2)当抛物线y=ax2+bx+c与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和x2存在时,根据二次三项式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=ax2+bx+c可转化为两根式y=a(x-x1)(x-x2).

    两角和公式

    sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

    cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

    tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

    ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

    倍角公式

    Sin(2a)=2sinacosa

    cos(2a)=cos^2(a)-sin^2(a)=2cos^(a)-1=1-2sin^2(a)

    tan(2a)=2tana/(1-tan^2(a))

    ctg 2A=(ctg 2A-1)/2ctga

    半角公式

    sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

    cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

    tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

    ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

    以上就是初三网小编为大家整理的初中数学常用重点公式整理 。

    相关阅读

    孔乙己人物形象特点分析 讲述了什么故事

    2022-10-19

    自然界产生氧气的化学方程式 光色素种类有哪些

    2022-10-19

    综合评价招生报考条件 有哪些优势

    2022-10-19

    中括号在数学中的含义 括号的作用是什么

    2022-10-19

    济南最好的职高学校 济南职高学校推荐

    2022-10-19

    应然和实然是什么意思 两者有区别吗

    2022-10-19

    地理地中海气候特点 地中海气候主要分布在哪里

    2022-10-19

    碱石灰的主要成分是什么

    2022-10-19

    济阳职业中等专业学校地址在哪里 怎么去

    2022-10-19

    亟需和急需的区别是什么

    2022-10-19

    综合评价招生是什么意思 报名条件是什么

    2022-10-19

    怎样提高英语写作能力 英语作文万能句子

    2022-10-19

    可见光波长范围是多少 有哪些特性

    2022-10-19

    中考前如何提高学习成绩 有哪些技巧

    2022-10-19

    e,k在数学中代表什么

    2022-10-19