假设α为任意角,则有任意角的三角函数公式为:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
正弦函数:(sinx)'=cosx
余弦函数:(cosx)'=-sinx
正切函数:(tanx)'=sec²x
余切函数:(cotx)'=-csc²x
正割函数:(secx)'=tanx·secx
余割函数:(cscx)'=-cotx·cscx
sin(-α)=-sinα
cos(-α)=cosα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
sin(π-α)=sinα
cos(π-α)=-cosα
sin(π+α)=-sinα
tanα=sinα/cosα
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
tan(π-α)=-tanα
tan(π+α)=tanα
sin(a)=[2tan(a/2)]/[1+tan2(a/2)]
cos(a)=[1-tan2(a/2)]/[1+tan2(a/2)]
tan(a)=[2tan(a/2)]/[1-tan2(a/2)]