一是无限不循环小数,例如:0.01001000100001……等;
二是根式,例如:√2,√3,(√5-1)/2等;
三是函数式,例如:lg2,sin1度等;
四是专用符号,如π、e、y。
无理数在位置数字系统中表示(例如,以十进制数字或任何其他自然基础表示)不会终止,也不会重复,即不包含数字的子序列。例如,数字π的十进制表示从3.141592653589793开始,但没有有限数字的数字可以精确地表示π,也不重复。
实数分为有理数和无理数。有理数和无理数主要区别有两点:
1.有理数可分为整数(正整数、0、负整数)和分数(正分数、负分数)。把有理数和无理数都写成小数形式时,有理数能写成有限小数或无限循环小数,比如4=4.0;4/5=0.8等等;也可分为正有理数(正整数、正分数),0,负有理数(负整数、负分数)。
而无理数只能写成无限不循环小数,比如√2=1.4142...,π=3.1415926...,根据这一点,人们把无理数定义为无限不循环小数.
2.所有的有理数都可以写成两个整数之比,而无理数却不能写成两个整数之比.因此,无理数也叫做非比数。