子集性质
一、根据子集的定义,我们知道A⊆A。也就是说,任何一个集合是它本身的子集。
二、对于空集∅,我们规定∅⊆A,即空集是任何集合的子集。
说明:若A=∅,则∅⊆A仍成立。
证明:给定任意集合A,要证明∅是A的子集。这要求给出所有∅的元素是A的元素;但是,∅没有元素。对有经验的数学家们来说,推论“∅没有元素,所以∅的所有元素是A的元素"是显然的;但对初学者来说,有些麻烦。因为∅没有任何元素,如何使"这些元素"成为别的集合的元素?换一种思维将有所帮助。
为了证明∅不是A的子集,必须找到一个元素,属于∅,但不属于A。因为∅没有元素,所以这是不可能的。因此∅一定是A的子集。