1、确定性
对任意对象都能确定它是不是某一集合的元素,这是集合的最基本特征。没有确定性就不能成为集合。如“很大的数”、“个子较高的同学”都不能构成集合。
2、互异性
集合中的任何两个元素都不相同,即在同一集合里不能出现相同元素。如把两个集合{1,2,3,4},{3,4,5,6,7}的元素合并在一起构成一个新集合,那么这个新集合只能写成{1,2,3,4,5,6,7}。
3、无序性
集合中的元素是平等的,没有先后顺序。因此判定两个集合是否相同,只需要比较他们的元素是否一样,不需考察排列顺序是否一样。如:{a,b,c}={a,c,b}。
(1)集合交换律:A∩B=B∩A;A∪B=B∪A。
(2)集合结合律:(A∩B)∩C=A∩(B∩C);(A∪B)∪C=A∪(B∪C)。
(3)集合分配律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)。
1、N:非负整数集合或自然数集合{0,1,2,3,…}
2、N*或N+:正整数集合{1,2,3,…}
3、Z:整数集合{…,-1,0,1,…}
4、Q:有理数集合
5、Q+:正有理数集合
6、Q-:负有理数集合
7、R:实数集合(包括有理数和无理数)
8、R+:正实数集合
9、R-:负实数集合
10、C:复数集合
11、∅:空集(不含有任何元素的集合)