三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
由于三角函数的周期性,它并不具有单值函数意义上的反函数。
三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。
在Rt△ABC中,如果锐角A确定,那么角A的对边与邻边的比值随之确定,这个比叫做角A的正切,记作tanA。
即:tanA=∠A的对边/∠A的邻边。
(1)平方关系:
sin^2(α)+cos^2(α)=1;
tan^2(α)+1=sec^2(α);
cot^2(α)+1=csc^2(α)。
tan是什么边比什么边?优质
(2)积的关系:
sinα=tanα*cosα cosα=cotα*sinα;
tanα=sinα*secα cotα=cosα*cscα;
secα=tanα*cscα cscα=secα*cotα。
(3)倒数关系:
tanα·cotα=1;
sinα·cscα=1;
cosα·secα=1。