(1)一般式:y=ax²+bx+c(a,b,c为常数,a≠0)。已知抛物线上任意三点的坐标可求函数解析式。
(2)顶点式:y=a(x-h)²+k(a≠0,a、h、k为常数)。顶点坐标为(h,k);对称轴为直线x=h;顶点的位置特征和图像的开口方向与函数y=ax²的图像相同,当x=h时,y最值=k.有时题目会指出让你用配方法把一般式化成顶点式。
(3)交点式(两根式):已知抛物线与x轴即y=0有交点A(x1, 0)和B(x2, 0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。仅限于与x轴即y=0有交点时的抛物线,即b²-4ac≥0。
(4)对称点式:若已知二次函数图象上的两个对称点(x1、m)(x2、m),则设成: y=a(x-x1)(x-x2)+m (a≠0),再将另一个坐标代入式子中,求出a的值,再化成一般形式即可。
(1)对于一般式:
①y=ax2+bx+c与y=ax2-bx+c两图像关于y轴对称
②y=ax2+bx+c与y=-ax2-bx-c两图像关于x轴对称
③y=ax2+bx+c与y=-ax2-bx+c-b2/2a关于顶点对称
④y=ax2+bx+c与y=-ax2+bx-c关于原点中心对称。(即绕原点旋转180度后得到的图形)
(2)对于顶点式:
①y=a(x-h)2+k与y=a(x+h)2+k两图像关于y轴对称,即顶点(h,k)和(-h,k)关于y轴对称,横坐标相反、纵坐标相同。
②y=a(x-h)2+k与y=-a(x-h)2-k两图像关于x轴对称,即顶点(h,k)和(h,-k)关于x轴对称,横坐标相同、纵坐标相反。
③y=a(x-h)2+k与y=-a(x-h)2+k关于顶点对称,即顶点(h,k)和(h,k)相同,开口方向相反。
④y=a(x-h)2+k与y=-a(x+h)2-k关于原点对称,即顶点(h,k)和(-h,-k)关于原点对称,横坐标、纵坐标都相反。