把方程化成一般形式ax²+bx+c=0,求出判别式△=b²-4ac的值;
当Δ>0时,x=[-b±(b²-4ac)^(1/2)]/2a,方程有两个不相等的实数根;
当Δ=0时,方程有两个相等的实数根;
当Δ<0时,方程无实数根,但有2个共轭复根。
(1)ax2+bx+c=0(a≠0,),等式两边都除以a,得x2+bx/a+c/a=0,
(2)移项得x2+bx/a=-c/a,方程两边都加上一次项系数b/a的一半的平方,即方程两边都加上b2/4a2。
(3)配方得x2+bx/a+b2/4a2=b2/4a2-c/a,即(x+b/2a)2=(b2-4ac)/4a,
(4)开根后得x+b/2a=±[√(b2-4ac)]/2a(√表示根号),最终可得x=[-b±√(b2-4ac)]/2a。
(1)把原方程化为一般形式;
(2)方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
(3)方程两边同时加上一次项系数一半的平方;
(4)把左边配成一个完全平方式,右边化为一个常数;
(5)进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。