数学中配方的公式是:把二次项系数化为1,然后陪一次项系数一半的平方。
这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它们本身也可以是表达式,可以含有除x以外的变量。
在一元二次方程中,配方法其实就是把一元二次方程移项之后,在等号两边都加上一次项系数绝对值一半的平方。
配方法的口诀
配方法口诀是一除二移三配四开方。配方法最关键的一步就是“配方”,即在方程两边都加上一次项系数一半的平方。
左未右已先分离,二系化“1”是其次。
一系折半再平方,两边同加没问题。
左边分解右合并,直接开方去解题。
该种解法叫配方,解方程时多练习。
配方法解一元二次方程的步骤
①把原方程化为一般形式,也就是ax2+bx+c=0(a≠0)的形式;
②把方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
③方程两边同时加上一次项系数一半的平方;
④把左边配成一个完全平方式,右边化为一个常数;
⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
在基本代数中,配方法是一种用来把二次多项式化为一个一次多项式的平方与一个常数的和的方法。这种方法是把以下形式的多项式化为以上表达式中的系数a、b、c、d和e,它们本身也可以是表达式,可以含有除x以外的变量。配方法通常用来推导出二次方程的求根公式:我们的目的是要把方程的左边化为完全平方。由于问题中的完全平方具有(x+y)2=x2+2xy+y2的形式,可推出2xy=(b/a)x,因此y=b/2a。等式两边加上y2=(b/2a)2,可得:
这个表达式称为二次方程的求根公式。