一直以来,由于阶乘定义的不科学,导致以后的阶乘拓展以后存在一些理解上得困扰,和数理逻辑的不顺。
阶乘从正整数一直拓展到复数。传统的定义不明朗。所以必须科学再定义它的概念
真正严谨的阶乘定义应该为:对于数n,所有绝对值小于或等于n的同余数之积。称之为n的阶乘,即n!
对于复数应该是指所有模n小于或等于│n│的同余数之积。。。对于任意实数n的规范表达式为:
正数n=m+x,m为其正数部,x为其小数部
负数n=-m-x,-m为其正数部,-x为其小数部
对于纯复数
n=(m+x)i,或n=-(m+x)i
我们再拓展阶乘到纯复数:
正实数阶乘:n!=│n│!=n(n-1)(n-2)....(1+x).x!=(i^4m).│n│!
负实数阶乘:(-n)!=cos(mπ)│n│!=(i^2m)..n(n-1)(n-2)....(1+x).x!
(ni)!=(i^m)│n│!=(i^m)..n(n-1)(n-2)....(1+x).x!
(-ni)!=(i^3m)│n│!=(i^3m)..n(n-1)(n-2)....(1+x).x!