使用铅笔和纸张乘数的常用方法需要一个小数字(通常为0到9的任意两个数字)的存储或查询产品的乘法表,但是一种农民乘法算法的方法不是。
将数字乘以多于几位小数位是繁琐而且容易出错的。发明了通用对数以简化这种计算。幻灯片规则允许数字快速乘以大约三个准确度的地方。从二十世纪初开始,机械计算器,如Marchant,自动倍增多达10位数。现代电子计算机和计算器大大减少了用手倍增的需要。
整数的乘法运算满足:交换律,结合律,分配律,消去律。
随着数学的发展,运算的对象从整数发展为更一般群。
群中的乘法运算不再要求满足交换律。最有名的非交换例子,就是哈密尔顿发现的四元数群。但是结合律仍然满足。
1.乘法交换律:ab=ba,注:字母与字母相乘,乘号不用写,或者可以写成·。
2.乘法结合律:(ab)c=a(bc),
3.乘法分配律:(a+b)c=ac+bc。