(1)arcsinx+arcsiny
arcsinx+arcsiny=arcsin(x√(1-y2)+y√(1-x2)),xy≤0或x2+y2≤1。
arcsinx+arcsiny=π-arcsin(x√(1-y2)+y√(1-x2)),x>0且y>0且x2+y2>1。
arcsinx+arcsiny=-π-arcsin(x√(1-y2)+y√(1-x2)),x<0且y<0且x2+y2>1。
(2)arcsinx-arcsiny
arcsinx-arcsiny=arcsin(x√(1-y2)-y√(1-x2)),xy≤0或x2+y2≤1。
arcsinx-arcsiny=π-arcsin(x√(1-y2)-y√(1-x2)),x>0且y<0且x2+y2>1。
arcsinx-arcsiny=-π-arcsin(x√(1-y2)+y√(1-x2)),x<0且y>0且x2+y2>1。
反余弦三角函数计算公式
(3)arccosx+arccosy
arccosx+arccosy=arccos(xy-√(1-x2)√(1-y2)),x+y≥0。
arccosx+arccosy=2π-arccos(xy-√(1-x2)√(1-y2)),x+y<0。
(4)arccosx-arccosy
arccosx-arccosy=-arccos(xy+√(1-x2)√(1-y2)),x≥y。
arccosx-arccosy=arccos(xy+√(1-x2)√(1-y2)),x<y。
反正切三角函数计算公式
(5)arctanx+arctany
arctanx+arctany=arctan(x+y)/(1-xy),xy<1。
arctanx+arctany=π+arctan(x+y)/(1-xy),x>0,xy>1。
arctanx+arctany=-π+arctan(x+y)/(1-xy),x<0,xy>1。
(6)arctanx-arctany
arctanx-arctany=arctan(x-y)/(1-xy),xy>-1。
arctanx-arctany=π+arctan(x-y)/(1-xy),x>0,xy<-1。
arctanx-arctany=-π+arctan(x-y)/(1-xy),x<0,xy<-1。
反余切三角函数计算公式
(7)arccotx+arccoty
arccotx+arccoty=arccot(xy-1)/(x+y),x>-y。
arccotx+arccoty=arccot[(xy-1)/(x+y)]+π,x<-y。
为限制反三角函数为单值函数,将反正弦函数的值y限在-π/2≤y≤π/2,将y作为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2<y<π/2;反余切函数y=arccot x的主值限在0<y<π。
反正弦函数
正弦函数y=sin x在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1] ,值域[-π/2,π/2]。
反余弦函数
余弦函数y=cos x在[0,π]上的反函数,叫做反余弦函数。记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。定义域[-1,1] , 值域[0,π]。