三角形重心是三角形三条中线的交点。重心的性质有:重心到顶点的距离与重心到对边中点的距离之比为2:1;重心和三角形3个顶点组成的3个三角形面积相等;重心到三角形3个顶点距离的平方和最小;重心是三角形内到三边距离之积最大的点;在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/(Y1+Y2+Y3)/3)。
性质一、重心到顶点的距离与重心到对边中点的距离之比为2:1。
性质二、重心和三角形3个顶点组成的3个三角形面积相等。
性质三、重心倒三角形3个顶点距离平方的和最小。
性质四、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数。
性质五、三角形内到三边距离之积最大的点。
三角形重心公式:x=(x1+x2+x3)/3。重心是指地球对物体中每一微小部分引力的合力作用点。物体的每一微小部分都受地心引力作用(见万有引力),这些引力可近似地看成为相交于地心的汇交力系。
三角形是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。